In this Jupyter
Before diving into the code, please take a quick look at the following websites, to get a feel for what we will be dealing with.
EU portal: https://data.europa.eu/euodp/en/data/publisher/ecb
ECB SDMX 2.1 RESTful web service: https://sdw-wsrest.ecb.europa.eu/help/
SDMX documentation: https://sdmx.org
ECB statistics: https://www.ecb.europa.eu/stats/ecb_statistics/html/index.en.html
Statistical Data Warehouse: https://sdw.ecb.europa.eu
In this tutorial we will specifically take a look at foreign exchange (FX) rates, using Python 3. As always, let's start with importing some packages we will use for this exercise.
import requests # 2.18.4
import pandas as pd # 0.23.0
import io
In this notebook, we will retrieve the Euro / Swiss Francs (EURCHF) exchange rate time series from the year 2000 until today. To retrieve the data, we need to construct an URL which we can use in
The query string is basically:
protocol://wsEntryPoint/resource/flowRef/key?parameters
And the parameters are defined as follows: startPeriod=value&endPeriod=value&updatedAfter=value&firstNObservations=value&lastNObservations=value&detail=value&includeHistory=value
Let's break this down:
# Building blocks for the URL
entrypoint = 'https://sdw-wsrest.ecb.europa.eu/service/' # Using protocol 'https'
resource = 'data' # The resource for data queries is always'data'
flowRef ='EXR' # Dataflow describing the data that needs to be returned, exchange rates in this case
key = 'D.CHF.EUR.SP00.A' # Defining the dimension values, explained below
# Define the parameters
parameters = {
'startPeriod': '2000-01-01', # Start date of the time series
'endPeriod': '2018-10-01' # End of the time series
}
Key (dimensions) explained:
For this example we only use two parameters, startPerdiod
endPeriod
Now we have to put all this together to construct the URL:
# Construct the URL: https://sdw-wsrest.ecb.europa.eu/service/data/EXR/D.CHF.EUR.SP00.A
request_url = entrypoint + resource + '/'+ flowRef + '/' + key
# Make the HTTP request
response = requests.get(request_url, params=parameters)
# Check if the response returns succesfully with response code 200
print(response)
# Print the full URL
print(response.url)
<Response [200]> https://sdw-wsrest.ecb.europa.eu/service/data/EXR/D.CHF.EUR.SP00.A?startPeriod=2000-01-01&endPeriod=2018-10-01
The request/response has been successful. If you click on this link, it will download the data as a file. It doesn't have a useful extension, but you can open it as a text file if you would like to inspect its contents. But of course, we can do this in Python too without leaving this notebook. Let's take a sneak peek at the data we received.
# Print the first 1000 characters of the response
print(response.text[0:1000])
<?xml version="1.0" encoding="UTF-8"?><message:GenericData xmlns:message="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/message" xmlns:common="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/common" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:generic="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/data/generic" xsi:schemaLocation="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/message https://sdw-wsrest.ecb.europa.eu:443/vocabulary/sdmx/2_1/SDMXMessage.xsd http://www.sdmx.org/resources/sdmxml/schemas/v2_1/common https://sdw-wsrest.ecb.europa.eu:443/vocabulary/sdmx/2_1/SDMXCommon.xsd http://www.sdmx.org/resources/sdmxml/schemas/v2_1/data/generic https://sdw-wsrest.ecb.europa.eu:443/vocabulary/sdmx/2_1/SDMXDataGeneric.xsd"> <message:Header> <message:ID>fc64a350-0e32-4b02-a0a6-844bfee9764f</message:ID> <message:Test>false</message:Test> <message:Prepared>2018-10-15T20:36:58.177+02:00</message:Prepared> <message:Sender id="ECB"/> <message:Structure structureID="
Hmmm, the response is in XML. Not impossible, but also not the easiest format to work within Pandas. Fortunately, the ECB's API lets us get the data in CSV format by specifying it in the header of the request.
# Make the HTTP request again, now requesting for CSV format
response = requests.get(request_url, params=parameters, headers={'Accept': 'text/csv'})
# Response succesful? (Response code 200)
print(response)
<Response [200]>
# Print the first 1000 characters to inspect the response
response.text[0:1000]
'KEY,FREQ,CURRENCY,CURRENCY_DENOM,EXR_TYPE,EXR_SUFFIX,TIME_PERIOD,OBS_VALUE,OBS_STATUS,OBS_CONF,OBS_PRE_BREAK,OBS_COM,TIME_FORMAT,BREAKS,COLLECTION,COMPILING_ORG,DISS_ORG,DOM_SER_IDS,PUBL_ECB,PUBL_MU,PUBL_PUBLIC,UNIT_INDEX_BASE,COMPILATION,COVERAGE,DECIMALS,NAT_TITLE,SOURCE_AGENCY,SOURCE_PUB,TITLE,TITLE_COMPL,UNIT,UNIT_MULT\r\nEXR.D.CHF.EUR.SP00.A,D,CHF,EUR,SP00,A,2000-01-03,1.6043,A,,,,P1D,,A,,,,,,,,,,4,,4F0,,Swiss franc/Euro,"ECB reference exchange rate, Swiss franc/Euro, 2:15 pm (C.E.T.)",CHF,0\r\nEXR.D.CHF.EUR.SP00.A,D,CHF,EUR,SP00,A,2000-01-04,1.6053,A,,,,P1D,,A,,,,,,,,,,4,,4F0,,Swiss franc/Euro,"ECB reference exchange rate, Swiss franc/Euro, 2:15 pm (C.E.T.)",CHF,0\r\nEXR.D.CHF.EUR.SP00.A,D,CHF,EUR,SP00,A,2000-01-05,1.606,A,,,,P1D,,A,,,,,,,,,,4,,4F0,,Swiss franc/Euro,"ECB reference exchange rate, Swiss franc/Euro, 2:15 pm (C.E.T.)",CHF,0\r\nEXR.D.CHF.EUR.SP00.A,D,CHF,EUR,SP00,A,2000-01-06,1.6068,A,,,,P1D,,A,,,,,,,,,,4,,4F0,,Swiss franc/Euro,"ECB reference exchange rate, Swiss franc/Euro, '
Excellent! Now we only need to load this response in a Pandas DataFrame. We can use 'StringIO' to read the strings as a file. This way we don't need to save it first and we can use it directly.
# Read the response as a file into a Pandas DataFrame
df = pd.read_csv(io.StringIO(response.text))
# Check the DataFrame's information
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4859 entries, 0 to 4858 Data columns (total 32 columns): KEY 4859 non-null object FREQ 4859 non-null object CURRENCY 4859 non-null object CURRENCY_DENOM 4859 non-null object EXR_TYPE 4859 non-null object EXR_SUFFIX 4859 non-null object TIME_PERIOD 4859 non-null object OBS_VALUE 4798 non-null float64 OBS_STATUS 4859 non-null object OBS_CONF 238 non-null object OBS_PRE_BREAK 0 non-null float64 OBS_COM 0 non-null float64 TIME_FORMAT 4859 non-null object BREAKS 0 non-null float64 COLLECTION 4859 non-null object COMPILING_ORG 0 non-null float64 DISS_ORG 0 non-null float64 DOM_SER_IDS 0 non-null float64 PUBL_ECB 0 non-null float64 PUBL_MU 0 non-null float64 PUBL_PUBLIC 0 non-null float64 UNIT_INDEX_BASE 0 non-null float64 COMPILATION 0 non-null float64 COVERAGE 0 non-null float64 DECIMALS 4859 non-null int64 NAT_TITLE 0 non-null float64 SOURCE_AGENCY 4859 non-null object SOURCE_PUB 0 non-null float64 TITLE 4859 non-null object TITLE_COMPL 4859 non-null object UNIT 4859 non-null object UNIT_MULT 4859 non-null int64 dtypes: float64(15), int64(2), object(15) memory usage: 1.2+ MB
You can see there are 4858 rows, which makes sense for almost 19 years of daily prices. There are 32 columns, which is probably more than we need. We can inspect the DataFrame to see which columns we need.
# Show the last 5 entries of the DataFrame
df.tail()
KEY | FREQ | CURRENCY | CURRENCY_DENOM | EXR_TYPE | EXR_SUFFIX | TIME_PERIOD | OBS_VALUE | OBS_STATUS | OBS_CONF | ... | COMPILATION | COVERAGE | DECIMALS | NAT_TITLE | SOURCE_AGENCY | SOURCE_PUB | TITLE | TITLE_COMPL | UNIT | UNIT_MULT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4854 | EXR.D.CHF.EUR.SP00.A | D | CHF | EUR | SP00 | A | 2018-09-25 | 1.1376 | A | F | ... | NaN | NaN | 4 | NaN | 4F0 | NaN | Swiss franc/Euro | ECB reference exchange rate, Swiss franc/Euro,... | CHF | 0 |
4855 | EXR.D.CHF.EUR.SP00.A | D | CHF | EUR | SP00 | A | 2018-09-26 | 1.1369 | A | F | ... | NaN | NaN | 4 | NaN | 4F0 | NaN | Swiss franc/Euro | ECB reference exchange rate, Swiss franc/Euro,... | CHF | 0 |
4856 | EXR.D.CHF.EUR.SP00.A | D | CHF | EUR | SP00 | A | 2018-09-27 | 1.1371 | A | F | ... | NaN | NaN | 4 | NaN | 4F0 | NaN | Swiss franc/Euro | ECB reference exchange rate, Swiss franc/Euro,... | CHF | 0 |
4857 | EXR.D.CHF.EUR.SP00.A | D | CHF | EUR | SP00 | A | 2018-09-28 | 1.1316 | A | F | ... | NaN | NaN | 4 | NaN | 4F0 | NaN | Swiss franc/Euro | ECB reference exchange rate, Swiss franc/Euro,... | CHF | 0 |
4858 | EXR.D.CHF.EUR.SP00.A | D | CHF | EUR | SP00 | A | 2018-10-01 | 1.1414 | A | F | ... | NaN | NaN | 4 | NaN | 4F0 | NaN | Swiss franc/Euro | ECB reference exchange rate, Swiss franc/Euro,... | CHF | 0 |
5 rows × 32 columns
The columns we need are 'TIME_PERIOD' for the dates and 'OBS_VALUE' for the prices. Let's also do a sanity check on the prices in 'OBS_VALUE'.
# Inspect the prices. Do the mean, minimum and maximum make sense?
df['OBS_VALUE'].describe()
count 4798.000000 mean 1.379459 std 0.193938 min 0.981600 25% 1.205500 50% 1.467300 75% 1.547200 max 1.680300 Name: OBS_VALUE, dtype: float64
Now we will make a new DataFrame called 'ts' (for time series) with just the dates and EURCHF prices.
# Create a new DataFrame called 'ts'
ts = df.filter(['TIME_PERIOD', 'OBS_VALUE'], axis=1)
# 'TIME_PERIOD' was of type 'object' (as seen in df.info). Convert it to datetime first
ts['TIME_PERIOD'] = pd.to_datetime(ts['TIME_PERIOD'])
# Set 'TIME_PERIOD' to be the index
ts = ts.set_index('TIME_PERIOD')
# Print the last 5 rows to screen
ts.tail()
OBS_VALUE | |
---|---|
TIME_PERIOD | |
2018-09-25 | 1.1376 |
2018-09-26 | 1.1369 |
2018-09-27 | 1.1371 |
2018-09-28 | 1.1316 |
2018-10-01 | 1.1414 |
To conclude, we make a chart of the time series:
%matplotlib inline
ts.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x11d9beba8>
Very often, there are already convenient Python packages available on the internet you can use. For instance, if you search the internet for "Python ECB SDMX" you will
Interestingly, pandaSDMX ships with built-in support for the following agencies:
More information can be found
In this last section, we are going to retrieve the same data (EURCHF daily exchange rates) with this package.
pip install
Now let's get the data!
from pandasdmx import Request
# Define the source
ecb = Request('ECB')
# Retrieve the data (we start at 2016, because are requesting a larger dataset (including other frequencies))
data_response = ecb.data(resource_id = 'EXR', key={'CURRENCY': ['CHF', 'EUR']}, params = {'startPeriod': '2016'})
data = data_response.data
# The data will be a pandaSDMC 'DataSet'
type(data)
pandasdmx.model.DataSet
# Show which frequencies are available ('D' is 'daily', you can probably guess the other ones)
set(s.key.FREQ for s in data.series)
{'A', 'D', 'H', 'M', 'Q'}
# Filter the the daily data and 'write' it to a DataFrame
daily = (s for s in data.series if s.key.FREQ == 'D')
ts2 = data_response.write(daily)
ts2.tail()
FREQ | D |
---|---|
CURRENCY | CHF |
CURRENCY_DENOM | EUR |
EXR_TYPE | SP00 |
EXR_SUFFIX | A |
TIME_PERIOD | |
2018-10-09 | 1.1381 |
2018-10-10 | 1.1412 |
2018-10-11 | 1.1430 |
2018-10-12 | 1.1470 |
2018-10-15 | 1.1428 |
%matplotlib inline
ts2.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x12235c080>
As you can see, the pandaSDMX pacakage is another easy way to retrieve the same data. Hopefully these examples will help you get started. Thanks for reading!
About the author:
Joris H., Python & open source enthusiast. Entrepreneur @ PythonSherpa - https://www.pythonsherpa.com